# On the theoretical properties of bipartition dissimilarity measure

# Shuguang Li<sup>1,2\*</sup>, Shuying Chen<sup>1, 2</sup>, Mengtian Cui<sup>3</sup>

<sup>1</sup> Key Laboratory of Intelligent Information Processing in Universities of Shandong (Shandong Institute of Business and Technology), Yantai, 264005, China

<sup>2</sup> College of Computer Science and Technology, Shandong Institute of Business and Technology, Yantai, 264005, China

<sup>3</sup> School of Computer Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China

Received 1 November 2014, www.cmnt.lv

#### Abstract

Bipartition dissimilarity is a new measure introduced by Alix Boc et al. They proposed an algorithm for inferring horizontal gene transfer events which can rely on different optimization criteria. Simulation results suggested that the strategy based on bipartition dissimilarity provided better results than those based on other three existing tree comparison indices. However, no theoretical analysis on it has been conducted since then in the literature. The present paper reports some useful new results for this measure. The theoretical properties studied include minimum positive value, neighborhood, and local modifications.

Keywords: Tree comparison, Bipartition dissimilarity, Minimum positive value, Neighborhood, Local modifications

## **1** Introduction

Horizontal Gene Transfer (HGT) is a direct transfer of genetic material from one lineage to another. It plays an important role in the evolution of microorganisms. Identifying HGT accurately is one of the major challenges in molecular biology [1]. Numerous methods have appeared since the 1990s [2-10].

Maddison [2], Page [3] et al. considered evolutionary rules for modeling HGT. Hallett and Lagergren [4] described an exponential-time algorithm (called LatTrans algorithm) that maps numerous gene trees into a species tree. Mirkin et al. [5] designed an algorithm that provides in each situation a parsimonious evolutionary scenario consisting of mapping gene loss and gain events into a species tree. Moret et al. [6] presented an overview of the methods using network-based models to recover HGT. Hallett et al. [7] obtained a combinatorial model incorporating HGT and duplication events. Nakhleh et al. [8] developed the "RIATA-HGT" heuristic, the latest version of which is much faster than LatTrans while being almost equivalent in terms of HGT recovery [9].

Alix Boc et al. [10] presented a new algorithm for detecting HGT events which can rely on different criteria. They introduced the "bipartition dissimilarity" (BD) between two phylogenetic trees, and showed by simulation that the BD-based strategy outperforms least square, Robinson and Foulds distance [11], and quartet distance [12]. They also compared the BD-based algorithm with LatTrans [4] and RIATA-HGT [8, 9] and showed by simulation that the former is superior to the latters in terms of both HGT recovery and running time. The bipartition dissimilarity measure is also used in [13]

for detecting partial HGT events and provides better results than the existing algorithms.

To the best of our knowledge, there is no theoretical analysis on bipartition dissimilarity measure in the literature to date. In this paper we analyze this measure theoretically and obtain some new results. These results provide a better understanding of this novel measure and show its usefulness and powerfulness in a greater degree.

The remainder of this paper is organized as follows. In Section 2, we introduce some notations and terminology, illustrate the definition of bipartition dissimilarity measure, and compare it with the Robinson-Foulds distance. In Section 3, we analyze the minimum positive value of this measure and neighborhood. In Section 4, we study the local modifications under this measure. We conclude this paper in Section 5.

### **2** Preliminaries

For sets A, B, let  $A \oplus B = (A \setminus B) \cup (B \setminus A)$  be their symmetric difference. Denote by |A| the cardinality of set A. A *phylogenetic tree* is a tree whose leaves are labeled bijectively by a set L (species) and no vertex has degree 2. Let |L| = n. Denote by  $\mathcal{T}_n$  the set of phylogenetic trees over L. A phylogenetic tree is *binary* if every non-leaf vertex has degree equal to 3.

A *bipartition* A | B of L is an unordered pair (i.e., A | B = B | A) of its subsets, such that  $A \cup B = L$  and  $A \cap B = \phi$ . Removing an edge from tree T disconnects the tree and induces a bipartition. Each pendant edge (one of its ends is a leaf) corresponds to a *trivial* bipartition,

<sup>\*</sup> Corresponding authour's E-mail: sgliytu@hotmail.com

#### Li Shuguang, Chen Shuying, Cui Mengtian

which must be present in every tree. Each internal edge corresponds to a *nontrivial* bipartition. Let  $\beta(T)$  and  $\beta_*(T)$  denote the set of bipartitions of T and the set of nontrivial bipartitions of T, respectively.

The Robinson-Foulds (RF) distance [11] is by far the most widely used distance measure for trees which counts the number of bipartitions present in one tree but not in the other. The RF distance between two trees  $T_1, T_2 \in \mathcal{T}_n$ , is defined as  $RF(T_1, T_2) = |\beta_*(T_1) \oplus \beta_*(T_2)|/2$ . The main disadvantage of RF distance is that it lacks robustness in the face of small modifications. Consider a caterpillar tree as shown in Figure 1. A *caterpillar tree* is a tree in which all non-leaf vertices form a single path. When one leaf at one end of the tree, we obtain a tree that is as far as possible in the RF distance i.e., n-3.



FIGURE 1 A caterpillar tree.

The *weight* of two bipartitions  $A_1 | B_1$  and  $A_2 | B_2$ , is defined as follows [10, 14]:

$$wt(A_{1} | B_{1}, A_{2} | B_{2})$$

$$= 0.5 \min\{|A_{1} \oplus A_{2}| + |B_{1} \oplus B_{2}|, |A_{1} \oplus B_{2}| + |B_{1} \oplus A_{2}|\}$$
(1)
$$= \min\{|A_{1}| + |A_{2}| - 2|A_{1} \cap A_{2}|, |A_{1}| - |A_{2}| + 2|A_{1} \cap A_{2}|\}.$$

Given two trees  $T_1$  and  $T_2$ . For each bipartition  $A_1 | B_1$  of  $T_1$ , define its distance to  $T_2$ ,  $dis(A_1 | B_1, T_2)$  as  $\min_{A_2|B_2 \in \beta(T_2)} \{wt(A_1 | B_1, A_2 | B_2)\}$ . Note that  $dis(A_1 | B_1, T_2) = 0$  if  $A_1 | B_1$  is a trivial bipartition of  $T_1$ . It is possible that for a nontrivial bipartition of  $T_1$ , arg  $\min_{A_2|B_2 \in \beta(T_2)} \{wt(A_1 | B_1, A_2 | B_2)\}$  is a trivial bipartition of  $T_2$ . Similarly, for each bipartition  $A_2 | B_2$  of  $T_2$ ,  $dis(A_2 | B_2, T_1)$  is defined as  $\min_{A_1|B_1 \in \beta(T_1)} \{wt(A_2 | B_2, A_1 | B_1)\}$ . If  $A_2 | B_2$  is a trivial bipartition of  $T_2$ , then  $dis(A_2 | B_2, T_1) = 0$ . It is possible that for a nontrivial bipartition of  $T_2$ , arg  $\min_{A_1|B_1 \in \beta(T_1)} \{wt(A_2 | B_2, A_1 | B_1)\}$  is a trivial bipartition of  $T_1$ .

The *bipartition dissimilarity* between trees  $T_1$  and  $T_2$ ,  $BD(T_1, T_2)$ , can be calculated in the following way [10]:

$$BD(T_1, T_2) = \left(\sum_{A_1 \mid B_1 \in \beta(T_1)} dis(A_1 \mid B_1, T_2) + \sum_{A_2 \mid B_2 \in \beta(T_2)} dis(A_2 \mid B_2, T_1)\right) / 2 \qquad (2)$$
$$= \left(\sum_{A_1 \mid B_1 \in \beta_*(T_1)} dis(A_1 \mid B_1, T_2) + \sum_{A_2 \mid B_2 \in \beta_*(T_2)} dis(A_2 \mid B_2, T_1)\right) / 2.$$

For instance, we compute the bipartition dissimilarity between trees  $T_1$  and  $T_2$  shown in Figure 2. We have the following nontrivial bipartitions for  $T_1$ :  $ab \mid cde$ ,  $abc \mid de$ , and for  $T_2$ :  $ac \mid bde$ ,  $acd \mid be$ . We get:  $dis(ab \mid cde, T_2) = wt(ab \mid cde, a \mid bcde) = 1$ ,  $dis(abc \mid de, T_2) = wt(abc \mid de, ac \mid bde) = 1$ ,  $dis(ac \mid bde, T_1) = wt(ac \mid bde, abc \mid de) = 1$ ,  $dis(acd \mid be, T_1) = wt(acd \mid be, abc \mid de) = 2$ . The bipartition dissimilarity between  $T_1$  and  $T_2$ ,  $BD(T_1, T_2)$ , is equal to (1+1+1+2)/2 = 2.5.



FIGURE 2 Two phylogenetic trees  $T_1$  and  $T_2$ 

The bipartition dissimilarity can be regarded as a weighted extension of the RF distance. In fact, the RF distance uses the following binary weighting scheme: the weight of two bipartitions  $A_1 | B_1$  and  $A_2 | B_2$ ,  $wt_{RF}(A_1 | B_1, A_2 | B_2)$ , is just 0 if they are identical and 1 otherwise. It is clear that the bipartition dissimilarity makes better use of the information in the bipartitions.

**Theorem 1** Let  $T_1, T_2 \in \mathcal{T}_n$ . Then,

$$RF(T_1,T_2) \leq BD(T_1,T_2) \leq \left\lfloor \frac{n}{2} \right\rfloor RF(T_1,T_2).$$

*Proof.* Note that for any two non-identical bipartitions  $A_1 \mid B_1 \text{ and } A_2 \mid B_2, 1 \le wt(A_1 \mid B_1, A_2 \mid B_2) \le \lfloor n/2 \rfloor$ . Hence we get  $wt(A_1 \mid B_1, A_2 \mid B_2) \ge wt_{RF}(A_1 \mid B_1, A_2 \mid B_2)$  and

$$wt(A_1 | B_1, A_2 | B_2) \le \lfloor n/2 \rfloor \cdot wt_{RF}(A_1 | B_1, A_2 | B_2).$$

The desired inequalities follow from the above analysis.  $\Box$ 

The bipartition dissimilarity measure is very similar to the matching split distance [14]. The main difference is that bipartition dissimilarity avoids the computation of a minimum-weight perfect matching in a complete bipartite

graph. On the other hand, the similarity between the two measures allows us to use some ideas of [14] in the next two sections.

#### 3 Minimum positive value and neighborhood

Let  $BD_{\min} = \min_{T_1, T_2 \in T_n \wedge T_1 \neq T_2} BD(T_1, T_2)$ . We call  $BD_{\min}$  the minimum positive value of bipartition dissimilarity. To investigate  $BD_{\min}$ , we need the following definition.

**Definition 1** Nearest Leaf Interchange (NLI) means interchanging two leaves that are incident to the same internal edge.

The generic form of a NLI operation is illustrated in Figure 3, where the operation is performed on the edge e, the circles A and B represent subtrees over sets of leaves A and B, and a and b represent two leaf labels.



FIGURE 3 A schematic representation of the generic NLI operation

**Theorem 2**  $BD_{\min} = 1$ , which is achieved by performing a single NLI operation on a tree.

*Proof.* Let  $T_1$  and  $T_2$  be two trees in  $\mathcal{T}_n$ . If  $T_1 = T_2$ , then we get  $BD(T_1, T_2) = 0$ . Otherwise, it must be true that there is a bipartition  $A_1 | B_1$  which is in  $T_1$  but not in  $T_2$ , and there is a bipartition  $A_2 | B_2$  which is in  $T_2$  but not in  $T_1$ . It follows that  $dis(A_1 | B_1, T_2) \ge 1$ ,  $dis(A_2 | B_2, T_1) \ge 1$ . Hence we get  $BD(T_1, T_2) \ge 1$ .

If  $T_2$  is obtained from  $T_1$  by performing a single NLI operation, as shown in Figure 3, then we get

$$dis(A \cup \{a\} | B \cup \{b\}, T_2) = wt(A \cup \{a\} | B \cup \{b\}, A \cup \{a, b\} | B) = 1.$$
(3)

$$dis(A \cup \{b\} | B \cup \{a\}, T_1) = wt(A \cup \{b\} | B \cup \{a\}, A \cup \{a, b\} | B) = 1.$$
(4)

Since all the other branches of  $T_1$  are left unchanged, we have  $BD(T_1, T_2) = 1$ . It follows that  $BD_{\min} = 1$ , which is achieved by performing a single NLI operation on a tree. On the other hand, it is easy to see that if  $T_2 \neq T_1$  and  $T_2$  is not obtained from  $T_1$  by performing a single NLI operation, then  $BD(T_1, T_2) > 1$ .  $\Box$ 

Two trees  $T_1$  and  $T_2$  in  $\mathcal{T}_n$  are said to be *neighbors* if  $BD(T_1, T_2) = 1$ . The *neighborhood* of a tree  $T \in \mathcal{T}_n$ , denoted by N(T), is the set of all trees that are neighbors of T. Theorem 2 permits us to create the neighborhood of a tree.

**Theorem 3** For a given tree T, the number of the trees in N(T) is at most n-1, and it is possible that |N(T)|=0.

*Proof.* Figure 4 shows a tree  $T_1$  with  $|N(T_1)| = n - 1$  and a tree  $T_2$  with  $|N(T_2)| = 0$ .  $\Box$ 



### **4** Local modifications

In order to investigate the local modifications under the bipartition dissimilarity measure, we need the following definitions.

**Definition 2** [15] Let  $T \in \mathcal{T}_n$  and  $X \subseteq L$ . The restricted spanning tree T(X) of T is the minimum subgraph of T that connects all the leaves whose labels are in X. The simplified spanning tree of T induced by X is a tree  $T_{|X}$  obtained from T(X) by replacing each maximal degree two path with an edge between the two ending vertices.

**Definition 3** [15] Let  $\mathcal{P} = \{T_1, T_2, ..., T_k\} \subseteq \mathcal{T}_n$ and X' be a maximum-sized subset of L for which  $T_{1|X'} = T_{2|X'} = \cdots = T_{k|X'}$ . This restricted subtree is called a maximum agreement subtree (mast) for  $\mathcal{P}$ .

An example of a maximum agreement subtree is shown in Figure 5. In applications, identifying maximum agreement subtrees may help to exclude a small number of problematic species which may cause estimates of an evolutionary tree to vary greatly between different data sets.

#### Li Shuguang, Chen Shuying, Cui Mengtian



FIGURE 5 Two Trees and one of their maximum agreement subtrees

**Theorem 4** Let  $T_1, T_2 \in \mathcal{T}_n$  and  $X = L \setminus \{x\}$ . Then (1)  $BD(T_1, T_2) \ge BD(T_{1|X}, T_{2|X})$ ,

(2) 
$$BD(T_1, T_2) \le BD(T_{1|X}, T_{2|X}) + \left\lfloor \frac{3n}{2} \right\rfloor - 4.$$
 (5)

*Proof.* Each bipartition  $A_1^X | B_1^X$  of  $T_{1|X}$  corresponds to a bipartition  $A_1 | B_1$  of  $T_1$  such that  $A_1 = A_1^X \cup \{x\}$  and  $B_1 = B_1^X$ , or  $A_1 = A_1^X$  and  $B_1 = B_1^X \cup \{x\}$ . Thus, we get:  $dis(A_1 | B_1, T_2) \ge dis(A_1^X | B_1^X, T_{2|X})$ , and  $dis(A_1 | B_1, T_2) \le dis(A_1^X | B_1^X, T_{2|X}) + 1$ . Since there are 2n-4 and 2n-3 bipartitions in  $T_{1|X}$  and  $T_1$ respectively, a bipartition of  $T_1$  is left unmapped which

we denote by  $A'_1 | B'_1$ . We have  $dis(A'_1 | B'_1, T_2) \leq \lfloor n/2 \rfloor$ . Similarly, each bipartition  $A^X_2 | B^X_2$  of  $T_{2|X}$ corresponds to a bipartition  $A_2 | B_2$  of  $T_2$  such that  $A_2 = A^X_2 \cup \{x\}$  and  $B_2 = B^X_2$ , or  $A_2 = A^X_2$  and  $B_2 = B^X_2 \cup \{x\}$ . Thus, we get:  $dis(A_2 | B_2, T_1) \geq dis(A^X_2 | B^X_2, T_{1|X})$ , and  $dis(A_2 | B_2, T_1) \leq dis(A^X_2 | B^X_2, T_{1|X}) + 1$ . Since there are 2n-4 and 2n-3 bipartitions in  $T_{2|X}$  and  $T_2$ respectively, a bipartition of  $T_2$  is left unmapped which we denote by  $A'_2 | B'_2$ . We have  $dis(A'_2 | B'_2, T_1) \leq \lfloor n/2 \rfloor$ .

The desired two inequalities follow from the above analysis.  $\hfill\square$ 

**Theorem 5** Let  $T_1, T_2 \in \mathcal{T}_n$ . If the maximum agreement subtree of  $T_1$  and  $T_2$  has n-1 leaves, then  $BD(T_1, T_2) \leq n-2$  and this bound is tight.

*Proof.* As shown in Figure 6 (first appeared in [14]),  $T_1$  and  $T_2$  have different bipartitions only at the positions  $s_i, t_i$  for i = 0, 1, ..., k - 1. For simplicity, we denote by  $s_i$  and  $t_i$  the bipartitions of  $T_1$  and  $T_2$  induced by the

#### Li Shuguang, Chen Shuying, Cui Mengtian

edges  $s_i$  and  $t_i$  respectively,  $i = 0, 1, \dots, k-1$ . Note that  $wt(s_i, t_i) = 1$  for  $i = 1, \dots, k-1$ . Moreover,  $wt(s_0, t_0) = \min\{|C|+1, n-|C|-1\}$ . Hence we get  $BD(T_1, T_2) \le k - 1 + n - |C| - 1 \le n - 2$ .

The bound n-2 is tight. To see this, we move a single leaf labeled 1 of a caterpillar tree (shown in Figure 1) to the other end of the tree. Let  $T_1$  and  $T_2$  be the original tree and the obtained tree, respectively. It is easy to see that  $BD(T_1, T_2) = n-2$ .  $\Box$ 



FIGURE 6 Two Trees differ only at the position of x

Although there are trees which have no neighbors as Theorem 3 shows, no isolated islands of trees distant from others exist indeed, since analysis analogous to Theorem 5.2 of [14] gives the following result.

**Theorem 6** Let  $T_a, T_b \in \mathcal{T}_n$ . There exists a sequence of trees in  $\mathcal{T}_n$ ,  $T_a = T_1, T_2, \dots, T_{k-1}, T_k = T_b$ , such that  $BD(T_i, T_{i+1}) \leq 2$  where  $i = 1, \dots, k-1$ .

*Proof.* A *rooted caterpillar tree* is defined as a tree obtained from a unrooted caterpillar tree by inserting a degree 2 vertex as the root on one of the four outmost edges. All one-, two- and three-leaf binary rooted trees are considered to be caterpillars.

We will perform four transformations to locally modify  $T_a$  and  $T_b$ . Each transformation is reversible. Two of them are *rooting* (specifying a root for an unrooted tree) and *unrooting* (transforming a rooted tree into an unrooted one), the others consist of a series of basic operations. There are three types of basic operations which create trees at distances of 2, 0.5 and 2 respectively, as shown in Figure 7.

The first transformation transforms  $T_a$  and  $T_b$  into rooted trees  $RT_a$  and  $RT_b$  as follows: Take any leaf and let it be the roots of  $T_a$  and  $T_b$  respectively.

The second transformation transforms  $RT_a$  and  $RT_b$ into rooted caterpillar trees  $RCT_a$  and  $RCT_b$ . It starts from rooted subtrees of  $RT_a$  ( $RT_b$ ) in bottom-up order by repeatedly applying the basic operations of types I and II. Suppose that we are processing the interior vertex

v which is connected to two rooted caterpillars, as shown in Figure 7. We repeatedly transfer a leaf from the first rooted caterpillar into the second by performing Operations I and II, and finally two smaller rooted caterpillars are merged into a bigger one. Note that if Li Shuguang, Chen Shuying, Cui Mengtian

 $RT_a$  and  $RT_b$  are binary rooted trees, then Operation II is unnecessary.

The third transformation transforms  $RCT_a$  and  $RCT_b$ into unrooted caterpillar trees  $UCT_a$  and  $UCT_b$  by canceling the root-specifying.



FIGURE 7 Three types of basic operations

The fourth transformation transforms  $UCT_a$  into  $UCT_b$  by repeatedly applying the basic operation of type III.

The desired sequence of trees is obtained easily from the sequence of transformations  $T_a \rightarrow RT_a \rightarrow RCT_a \rightarrow UCT_a \rightarrow UCT_b \rightarrow RCT_b$  $\rightarrow RT_b \rightarrow T_b$ .  $\Box$ 

#### **5** Conclusions

Bipartition dissimilarity is a new measure and no theoretical analysis on it is known to date. We analyzed this measure in the paper and reported some theoretical properties of it, including minimum positive value, neighborhood, and local modifications. These results reduce the uncertainty of this measure, offer deeper insights into its behavior, and thus present a theoretical basis on which we can use this measure more efficiently and reliably. It would be interesting to investigate other properties of this measure, or use it in the other applications.

#### Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61173173, 61272016, 61272430, 61373079, 61379019 and 61432010), Key project of Chinese Ministry of Education (No. 212101), Shandong Provincial Natural Science Foundation of China (Nos. ZR2013FM015 and ZR2011FL004). A Project of Shandong Province Higher Educational Science and Technology Program (No. SX12J4).

#### References

- Koonin E V 2003 Horizontal gene transfer: the path to maturity Molecular microbiology 50 725-7
- [2] Maddison W P 1997 Gene trees in species trees Systematic biology 46 523-36
- [3] Page R D, Charleston M A 1998 Trees within trees: phylogeny and historical associations *Trends in Ecology & Evolution* 13, 356-9
- [4] Hallett M T,Lagergren, J 2001 Efficient algorithms for lateral gene transfer problems *Proceedings of the fifth annual international* conference on Computational biology 149-56
- [5] Mirkin B G, Fenner T I, Galperin M Y, Koonin E V 2003 Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes *BMC evolutionary biology* **3** 2
- [6] Moret B. M., Nakhleh L., Warnow T., Linder C. R., Tholse A., Padolina A., et al 2004 Phylogenetic networks: modeling, reconstructibility, and accuracy *IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)* 1 13-23
- [7] Hallett M, Lagergren J, Tofigh A 2004 Simultaneous identification of duplications and lateral transfers Proceedings of the eighth annual international conference on Resaerch in computational molecular biology 347-56
- [8] Nakhleh L, Ruths D, and Wang L-S 2005 RIATA-HGT: a fast and accurate heuristic for reconstructing horizontal gene transfer *Computing and Combinatorics*, Springer 84-93
- [9] Than C, Nakhleh L 2008 SPR-based Tree Reconciliation: Nonbinary Trees and Multiple Solutions APBC 251-60
- [10] Boc H Ph, Makarenkov V 2010 Inferring and validating horizontal gene transfer events using bipartition dissimilarity Systematic biology 59 195-211
- [11] Robinson D, Foulds L R 1981 Comparison of phylogenetic trees Mathematical Biosciences 53 131-47
- [12] Estabrook G F, McMorris F, and Meacham C A 1985 Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units *Systematic Biology* 34 193-200
- [13] Boc H Ph, Makarenkov 2011 Towards an accurate identification of mosaic genes and partial horizontal gene transfers *Nucleic acids research* 39 e144-e148
- [14] Bogdanowicz D, Giaro K 2012 Matching split distance for unrooted binary phylogenetic trees IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 9 150-60
- [15] Semple C, Steel M. A 2003 *Phylogenetics* Oxford University Press

| Authors |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Li Shuguang, born in October, 1970, Ling County, Shandong Province, P. R. China<br>Current position, grades: Associate professor in College of Computer Science and Technology, Shandong Institute of<br>Business and Technology, China.<br>University studies: B.Sc. of Mathematics from Shandong Normal University in China in 1993. M.Sc. of Operational<br>Research and Cybernetics from Shandong University in China in 2001. Ph.D. of Operational Research and Cybernetics<br>from Shandong University in China in 2007.<br>Scientific interest: Combinatorial optimization, approximation algorithms, graph theory, and bioinformatics.<br>Publications: more than 10 papers published in various journals.<br>Experience: teaching experience of 18 years, 5 scientific research projects. |
|         | <ul> <li>Chen Shuying , born in December,1979, Dingzhou City, Hebei Province, P. R. China</li> <li>Current position, grades: lecturer in College of Computer Science and Technology, Shandong Institute of Business and Technology, China.</li> <li>University studies: B.Sc. from Shandong Institute of Business and Technology in China. M.Sc. from Liaoning Technical University in China.</li> <li>Scientific interest: Bioinformatics.</li> <li>Publications: more than 10 papers published in various journals.</li> <li>Experience: teaching experience of 7 years, 2 scientific research projects.</li> </ul>                                                                                                                                                                              |
|         | <ul> <li>Cui Mengtian, born in May, 1972, Jinjiang District, Chengdu city, P.R. China</li> <li>Current position, grades: Professor in School of Computer Science and Technology, Southwest University for Nationalities.</li> <li>University studies: Ph.D. of computer software and theory from CAS in 2010.</li> <li>Scientific interest: Trusted computing, trusted software technology and algorithms.</li> <li>Publications: more than 30 papers published in various journals.</li> <li>Experience: 16 years of experience in computer software and theory, more than 20 scientific research projects.</li> </ul>                                                                                                                                                                            |